Gathering for mobile agents with a strong team in weakly Byzantine environments oJion Hiorse¹ Masashi Tsuchida¹ Junya Nakamura² Fukuhito Ooshita¹ Michiko Inoue¹

¹Nara Institute of Science and Technology ²Toyohashi University of Technology

Agenda

- Background
- Contribution
- Model & Goal
- Proposed Algorithm
 - Basic Idea
 - Details
- Conclusion

Mobile agents

- Software programs moving autonomously from node to node in a distributed system
 - An agent can keep its state and program during move
- A paradigm to design distributed systems

Gathering

- Goal: All agents meet at a single node
- Efficient information sharing scheme among all agents
- Many researches on various models:
 - Presence/Absence of whiteboards (memories on nodes)
 - Anonymous/Distinct agents (no/unique IDs)
 - Synchronous/Asynchronous agents, etc.

Byzantine environments

Byzantine agents exist in the systems

- They behave arbitrarily
- They imitate software bugs, cracked agents, etc.

Example

Algorithms for Byzantine environments tolerate any fault of agents

Gathering in synchronous Byzantine environments⁵

Time complexity of the existing algorithms isn't small

	Input	Byzantin e fault	Condition of #Byzantine agents	Time complexity	
[1]	n	Weak	$f + 1 \le k$ (Optimal)	$O\left(n^4 \cdot \left \Lambda_{good}\right \cdot X(n)\right)$	(1)
[1]	f	Weak	$2f + 2 \le k$ (Optimal)	Poly. of $n \& \left \Lambda_{good} \right $	> (1)
[2]	n, f	Strong	$2f + 1 \le k$ (Optimal)	Exp. of $n \& \left \Lambda_{good} \right $	
[2]	f	Strong	$2f + 2 \le k$ (Optimal)	Exp. of $n \otimes \Lambda_{good} $	
[3]	[log log n]	Strong	$5f^2 + 7f + 2 \le k$	Poly. of $n \& \left \Lambda_{good} \right $	> (1)

n: #nodes, k: #agents in the network, f: #Byzantine agents, agents, X(n): Time required to visit all n nodes [1]Y. Dieudonné, et al., ACM Trans on Algorithms 11, (20) [2]S. Bouchard, et al., Distributed Computing 29(6), (2016)

[3]S. Bouchard, et al., In:ICALP. (2020)

Contribution

 Reduce time complexity in weakly Byzantine environments by relaxing the condition of #Byzantine agents

#Byzantine agents is small in real networks

	Input	Startup delay	Condition of #Byzantine agents	Simultaneous termination	Time complexity	
[1]	n	Presence	$f+1 \leq k$	Possible	$O\left(n^4 \cdot \left \Lambda_{good}\right \cdot X(n)\right)$	
Algo. 1	Ν	Absence	$4f^2 + 9f + 4 \le k$	Impossible	$O\left(\left(f + \left \Lambda_{good}\right \right) \cdot X(N)\right)$	
$\begin{array}{l} A_{n} = P_{no} \det_{\mathcal{N}} & \text{imply} : upp \not \in \mathcal{N} & \text{imply} & f & f & f & f & f & f & f & f & f & $						
$ \Lambda_{all} $: X(n):	The length Time requi	n of the largest $ $ red to visit all n	$\leq \Lambda_{all} ,$	\Rightarrow faster than [1]		

Agenda

Background

Contribution

Model & Goal

Proposed Algorithm

7

- Basic Idea
- Details
- Conclusion

Model

A distributed system

- A node has neither ID nor whiteboard
- Edges incident to a node are locally ordered with a fixed port numbering

Agents

- Awake at the same time (no start-up delay)
- Have unique IDs
- Know the upper bound *N* of #nodes
- Have unlimited amount of memory
- Can share information with other agents on the same node

Model

Synchronous agents

An agent can move to its adjacent node in 1 unit time (round)

- A weakly Byzantine environment
 - f weakly Byzantine agents
 - Behave arbitrarily without following an algorithm
 - Can't change their IDs
 - At least $4f^2 + 8f + 4$ good agents

Goal

• Goal: Gathering in a weakly Byzantine environment

- All good agents gather on a single node
 - Don't care Byzantine agents' locations
- Two types of termination
 - Non-simultaneous termination: All good agents terminate
 - Simultaneous termination: All good agents terminate at the same

Non-simultaneous termination

Simultaneous termination

Agenda

- Background
- Contribution
- Model & Goal
- Proposed Algorithm

11

- Basic Idea
- Details
- Conclusion

Preparation: Exploration algorithm

Exploration: Visiting all the nodes in a network

- We use the existing algorithm [4]
- The time complexity is denoted by X(N)
 - N: Upper bound of #nodes Tree and Ring: X(N) = O(N)

[4] Ta-Shma, A., et al., In: SODA. (2007)

Arbitrary graph: $X(N) = O(N^5 \log N)$

Basic strategy

• Gather on the node with the agent with the smallest ID

- 1. Agents collect all agent IDs
- 2. Agents search for the agent with the smallest ID
 - The agent with the smallest ID waits for their arrival

Gathering: Difficulty & Strategy

<u>Difficulty</u>

• If a Byzantine agent has the smallest ID, agents fail to gather

Agents don't meet the Byzantine agent when collecting IDs
 ⇒ The smallest ID that agents know may be different

<u>Strategy</u>

Create a reliable group consisting of enough agents & use only the information from reliable group

1. Collect all the reliable group IDs

Thanks to many good agents

14

2. Gather on the node with the group of the smallest ID At least f + 1 agents convey the same

Overview

1. CollectID stage agents

- : Collect IDs including all good
- 2. MakeGroup stage
- : Create a reliable group : A ieve gathering 3. Gather stage

CollectID stage

- Goal: Collect IDs including all good agents
- Behavior: Execute the rendezvous algorithm [5]
 - Repeat Exploring the network or Waiting for X(N) rounds based on ID
 ⇒ A good agent can meet all the other good agents
- Time complexity: $O\left(|\Lambda_{good}| \cdot X(N)\right)$

N: upper bound of #nodes Λ_{good} : The largest ID of good agents

MakeGroup stage: Idea

- Goal: Create a reliable group consisting of enough agents
- Idea: Move to the node with the smallest ID agent
 - **2** : **The smallest ID agent** waits
 - **2** : **Other agents** search for the agent by the exploration algorithm
- If the smallest ID agent is Byzantine, agents may not create a

Good agent with the smallest ID

Byzantine agent with the smallest ID

MakeGroup stage: Improved idea 1/2¹⁸

Improved idea: Make the smallest f + 1 agents wait

- Good agents don't know the Agents with the smallest f + 1 IDs exact f \Rightarrow At least one good agent waits
 - lse an estimate value

Agents searching for waiting good agents succeed to search for them

MakeGroup stage: Improved idea 2/2¹⁹

Improved idea: Make the smallest f + 1 agents wait

- **Solution Agents with the smallest** *f* + 1 **IDs** wait
- **Other agents** search for the smallest ID agent among collected IDs
 - If they fail to find the smallest one, they search for the next one Good agents are divided into at most f + 1 groups

MakeGroup stage: Reliable group

• At least one group must have at least 4f + 4 agents (Reliable group)

20

- Good agents are divided into at most f + 1 groups
- Assumption of $f: 4f^2 + 9f + 4 = (4f + 4)(f + 1) \le #agents$
- When a reliable group is created, the group
 - Decides the smallest ID in the group as the group ID

MakeGroup stage: Time complexity

21

• Time complexity: $O(f \cdot X(N))$

• #search iterations: at most f + 1

Worst case

An agent fails to search for Byzantine agents f times

Gather stage: Idea

Goal: Achieve gathering

• Idea:

1. Collect all reliable group IDs

2. Gather on the node with the reliable group with the smallest group ID

Gather stage: Step 1

Step 1: Collect all reliable group IDs

- Agents in a reliable group: Convey and collect group IDs
 - **a**...**b** (Waiting gr.): Wait for X(N) rounds
 - **2**...**2** (Exploring gr.): Explore the network
- Other agents: Collect group IDs, while exploring the network

Gather stage: Step 2

Step 2: Achieve gathering

- Waiting group with the smallest group ID:
 - \cdots : Waits for X(N) rounds

• Other agents:

Gather stage: How to enter

<u>Requirement</u>

 All agents enter the Gather stage at the same round after they create a reliable group (RG)

Solution

- Enter the Gather stage every X(N) rounds of the MakeGroup stage
 - \Rightarrow All agents repeatedly enter the Gather stage at the same round

Time complexity with non-simultaneous termination

- CollectID stage : $O\left(\left|\Lambda_{good}\right| \cdot X(N)\right)$
 - $|\Lambda_{good}|$: The length of the largest ID among good agent IDs
- MakeGroup stage : $O(f \cdot X(N))$
- Gather stage : 2X(N) rounds are inserted every X(N) rounds
 Step 1 : X(N)

26

• Step 2: X(N)

Total time complexity:
$$O\left(\left(f + |\Lambda_{good}|\right) \cdot X(N)\right)$$

f: #Byzantine agents $|\Lambda_{good}|$: The length of the largest ID among good agents X(n): Time required to visit all n nodes

Conclusion

Contribution

Reduce time complexity in weakly Byzantine environments by relaxing #Byzantine agents

Future work

Design an algorithm that works even in the presence of startup delay

	Input	Startup delay	Condition of #Byzantine agents	Simultaneous termination	Time complexity
[1]	n	Presence	$f+1 \leq k$	Possible	$O\left(n^4 \cdot \left \Lambda_{good}\right \cdot X(n)\right)$
Algo. 1	N	Absence	$4f^2 + 9f + 4 \le k$	Impossible	$O\left(\left(f + \left \Lambda_{good}\right \right) \cdot X(N)\right)$
Algo. 2	N	Absence	$4f^2 + 9f + 4 \le k$	Possible	$O\big((f+ \Lambda_{all})\cdot X(N)\big)$