
Gathering for mobile agents 
with a strong team 
in weakly Byzantine environments

○Jion Hiorse1 Masashi Tsuchida1 Junya Nakamura2

Fukuhito Ooshita1 Michiko Inoue1

1Nara Institute of Science and Technology

2Toyohashi University of Technology



⚫ Background

⚫ Contribution

⚫ Model & Goal

⚫ Proposed Algorithm

⚫ Basic Idea

⚫ Details

⚫ Conclusion

1
Agenda



⚫ Software programs moving autonomously from node to node 

in a distributed system

⚫ An agent can keep its state and program during move

⚫ A paradigm to design distributed systems

2
Mobile agents

Program

State



⚫ Goal: All agents meet at a single node

⚫ Efficient information sharing scheme among all agents

⚫ Many researches on various models: 

⚫ Presence/Absence of whiteboards (memories on nodes)

⚫ Anonymous/Distinct agents (no/unique IDs)

⚫ Synchronous/Asynchronous agents, etc.

3
Gathering



⚫ Byzantine agents exist in the systems

⚫ They behave arbitrarily

⚫ They imitate software bugs, cracked agents, etc.

4
Byzantine environments

Arbitrary behavior

Algorithms for Byzantine environments tolerate any fault of 

agents

False information

Example

All agents gathered on this 

nodeMoveMove



Time complexity of the existing algorithms isn’t small

5
Gathering in synchronous Byzantine environments

[1]Y. Dieudonné, et al.,  ACM Trans on Algorithms 11, (2014) 

[2]S. Bouchard, et al., Distributed Computing 29(6), (2016) 

[3]S. Bouchard, et al., In:ICALP. (2020)

𝑛 : #nodes, 𝑘 : #agents in the network, 𝑓 : #Byzantine agents, Λ𝑔𝑜𝑜𝑑 : The length of the largest ID among good 

agents, 

𝑋 𝑛 : Time required to visit all 𝑛 nodes

Input
Byzantin

e fault

Condition of 

#Byzantine agents
Time complexity

[1] 𝑛 Weak 𝑓 + 1 ≤ 𝑘 (Optimal) 𝑂 𝑛4 ∙ Λ𝑔𝑜𝑜𝑑 ∙ 𝑋 𝑛 (1)

[1] 𝑓 Weak 2𝑓 + 2 ≤ 𝑘 (Optimal) Poly. of 𝑛 & Λ𝑔𝑜𝑜𝑑 > (1) 

[2] 𝑛, 𝑓 Strong 2𝑓 + 1 ≤ 𝑘 (Optimal) Exp. of 𝑛 & Λ𝑔𝑜𝑜𝑑

[2] 𝑓 Strong 2𝑓 + 2 ≤ 𝑘 (Optimal) Exp. of 𝑛 & Λ𝑔𝑜𝑜𝑑

[3] log log 𝑛 Strong 5𝑓2 + 7𝑓 + 2 ≤ 𝑘 Poly. of 𝑛 & Λ𝑔𝑜𝑜𝑑 > (1)



⚫ Reduce time complexity in weakly Byzantine environments 

by relaxing the condition of #Byzantine agents

⚫ #Byzantine agents is small in real networks

6
Contribution

Input
Startup 

delay

Condition of 

#Byzantine 

agents

Simultaneous 

termination
Time complexity

[1] 𝑛 Presence 𝑓 + 1 ≤ 𝑘 Possible 𝑂 𝑛4 ∙ Λ𝑔𝑜𝑜𝑑 ∙ 𝑋 𝑛

Algo. 

1
𝑁 Absence 4𝑓2 + 9𝑓 + 4 ≤ 𝑘 Impossible 𝑂 𝑓 + Λ𝑔𝑜𝑜𝑑 ∙ 𝑋 𝑁

Algo. 

2
𝑁 Absence 4𝑓2 + 9𝑓 + 4 ≤ 𝑘 Possible 𝑂 𝑓 + Λ𝑎𝑙𝑙 ∙ 𝑋 𝑁𝑛 : #nodes, 𝑁 : upper bound of #nodes, 𝑘 : #agents in the network, 

𝑓 : #Byzantine agents, Λ𝑔𝑜𝑜𝑑 : The length of the largest ID among good agents, 

Λ𝑎𝑙𝑙 : The length of the largest ID among agents, Λ𝑔𝑜𝑜𝑑| ≤ |Λ𝑎𝑙𝑙 , 

𝑋 𝑛 : Time required to visit all 𝑛 nodes

𝑓 < 𝑛 & |𝛬𝑎𝑙𝑙 | = 𝑂 𝛬𝑔𝑜𝑜𝑑
⇒ faster than [1]



⚫ Background

⚫ Contribution

⚫ Model & Goal

⚫ Proposed Algorithm

⚫ Basic Idea

⚫ Details

⚫ Conclusion

7
Agenda



⚫ A distributed system

⚫ A node has neither ID nor whiteboard

⚫ Edges incident to a node are locally ordered with a fixed port 

numbering

⚫ Agents

⚫ Awake at the same time (no start-up delay)

⚫ Have unique IDs

⚫ Know the upper bound 𝑁 of #nodes

⚫ Have unlimited amount of memory

⚫ Can share information with other agents 

on the same node

8
Model

0 0

0
0

1

1 1
2

21

4



⚫ Synchronous agents

⚫ An agent can move to its adjacent node in 1 unit time (round)

9
Model

𝑡

𝑡
1 round

⚫ A weakly Byzantine environment

⚫ 𝑓 weakly Byzantine agents

⚫ Behave arbitrarily without following an algorithm

⚫ Can’t change their IDs

⚫ At least 4𝑓2 + 8𝑓 + 4 good agents

good

Byzantinegood

good



⚫ Goal: Gathering in a weakly Byzantine environment

⚫ All good agents gather on a single node

⚫ Don’t care Byzantine agents’ locations

⚫ Two types of termination

⚫ Non-simultaneous termination: All good agents terminate

⚫ Simultaneous termination: All good agents terminate at the same 

round

10
Goal

Non-simultaneous termination Simultaneous termination

Terminate

Terminate Terminate



⚫ Background

⚫ Contribution

⚫ Model & Goal

⚫ Proposed Algorithm

⚫ Basic Idea

⚫ Details

⚫ Conclusion

11
Agenda



⚫ Exploration: Visiting all the nodes in a network

⚫ We use the existing algorithm [4]

⚫ The time complexity is denoted by 𝑋 𝑁
⚫ 𝑁: Upper bound of #nodes

12
Preparation: Exploration algorithm

[4] Ta-Shma, A., et al., In: SODA. (2007)

Tree and Ring: 𝑋 𝑁 = 𝑂 𝑁 Arbitrary graph: 𝑋 𝑁 = 𝑂 𝑁5 log𝑁



⚫ Gather on the node with the agent with the smallest ID

1. Agents collect all agent IDs

2. Agents search for the agent with the smallest ID

⚫ The agent with the smallest ID waits for their arrival

13
Basic strategy

: Smallest agent : Agent

Collect 

agent IDs Gather

Wait
Search

Search

Search
Search

Search



Difficulty

⚫ If a Byzantine agent has the smallest ID, agents fail to gather

⚫ Agents don’t meet the Byzantine agent when collecting IDs

⇒ The smallest ID that agents know may be different

Strategy

⚫ Create a reliable group consisting of enough agents &

use only the information from reliable groups

1. Collect all the reliable group IDs

2. Gather on the node with the group of the smallest ID

14
Gathering: Difficulty & Strategy

⋯ ⋯

At least 𝑓 + 1 agents convey the same 

Info.

⇒ This group has at least one good 

agent

⇒ This information can be trusted
At least 𝑓 +

1
At most 

𝑓

Convey 

Info.

Thanks to many good agents

At least 2𝑓 +
1



1. CollectID stage : Collect IDs including all good 

agents

2. MakeGroup stage : Create a reliable group

3. Gather stage : Achieve gathering

15
Overview

MakeGroup Gather



⚫ Goal: Collect IDs including all good agents

⚫ Behavior: Execute the rendezvous algorithm [5]

⚫ Repeat Exploring the network or Waiting for 𝑿 𝑵 rounds based on ID

⇒ A good agent can meet all the other good agents

⚫ Time complexity: 𝑂 |Λ𝑔𝑜𝑜𝑑| ∙ 𝑋 𝑁

16
CollectID stage

[5] Dessmark, A., et al., Algorithmica 46(1), (2006) 

Wait
Wait

Explore
Wait

𝑁: upper bound of #nodes

Λ𝑔𝑜𝑜𝑑: The largest ID of good agents



⚫ Goal: Create a reliable group consisting of enough agents

⚫ Idea: Move to the node with the smallest ID agent

: The smallest ID agent waits

: Other agents search for the agent by the exploration algorithm

⚫ If the smallest ID agent is Byzantine, agents may not create a 

group

17
MakeGroup stage: Idea

Good agent with the smallest ID Byzantine agent with the smallest ID

1
2

5

7

1 2 5 7

1

2
5

7

1
2

5

7



Improved idea: Make the smallest 𝑓 + 1 agents wait

Agents with the smallest 𝒇 + 𝟏 IDs wait

⇒ At least one good agent waits

18
MakeGroup stage: Improved idea 1/2

Good agents don’t know the 

exact 𝑓
⇒ Use an estimate value

1
2

5

7 1

5

2
7

Example (𝑓 = 1)

Agents searching for waiting good agents succeed to search for 

them

1 52 7

Within 𝑓 + 1

Searching agents



Improved idea: Make the smallest 𝑓 + 1 agents wait

Agents with the smallest 𝒇 + 𝟏 IDs wait

Other agents search for the smallest ID agent among 

collected IDs

⚫ If they fail to find the smallest one, they search for the next one

19
MakeGroup stage: Improved idea 2/2

Example (𝑓 = 1)

Good agents are divided into at most 𝑓 + 1 groups

1
2

5

7

12

5

7 12 5 7
ID:1

ID:1
ID:1 ⇒

2



⚫ At least one group must have at least 4𝑓 + 4 agents (Reliable 

group)

⚫ Good agents are divided into at most 𝑓 + 1 groups

⚫ Assumption of 𝑓 : 4𝑓2 + 9𝑓 + 4 = 4𝑓 + 4 𝑓 + 1 ≤ #agents

⚫ When a reliable group is created, the group

⚫ Decides the smallest ID in the group as the group ID

⚫ Divides the group in half for the Gather stage

20
MakeGroup stage: Reliable group

Reliable 

groupWaiting 

group

Exploring 

group⋯ ⋯
2𝑓 + 2 2𝑓 + 2

4𝑓 + 4

Good agents : at least 𝑓 +
2

Byzantine agents : at most 

𝑓

⋯

⋯

ID:2 ID:12 ID:13 ID:23

Group ID

Information provided by a group of at least 2𝑓 + 2 agents is 

reliable



⚫ Time complexity: 𝑂 𝑓 ∙ 𝑋 𝑁

⚫ #search iterations: at most 𝑓 + 1

21
MakeGroup stage: Time complexity

Worst case

⋯

1ID:1

2

ID:2

ID:10

10

An agent fails to search for Byzantine agents 𝑓 times

1st exploration 2nd exploration (𝑓 + 1)-th exploration



⚫ Goal: Achieve gathering

⚫ Idea: 

1. Collect all reliable group IDs

2. Gather on the node with the reliable group with the smallest group ID

22
Gather stage: Idea

Group ID:2
Group ID:4⋯ ⋯
⋯ ⋯

Group ID:2

Group ID:4⋯
⋯

⋯

⋯

⋯ ⋯: Reliable group (Waiting) : Reliable group (Exploring) : Other agents

⋯⋯

⋯⋯

Group ID: {2, 4}



Step 1: Collect all reliable group IDs

⚫ Agents in a reliable group: Convey and collect group IDs 

(Waiting gr.): Wait for 𝑋(𝑁) rounds

(Exploring gr.): Explore the network

⚫ Other agents     : Collect group IDs, while exploring the network

23
Gather stage: Step 1

⋯

⋯

Group ID:2
Group ID:4 Group ID:2

Group ID:4
⋯
⋯ ⋯

⋯
⋯

⋯

⋯

⋯

Group ID: {2, 4}

Group ID:2

Group ID:4⋯

⋯

⋯
⋯

wait

wait



Step 2: Achieve gathering

⚫ Waiting group with the smallest group ID:

: Waits for 𝑋 𝑁 rounds

⚫ Other agents:

: Search for the waiting group with the smallest group 

ID

24
Gather stage: Step 2

Group ID:2

Group ID:4⋯
⋯

⋯

⋯

⋯

⋯⋯

⋯⋯

⋯⋯Wait for other agents

The smallest 

group ID is 2



25
Gather stage: How to enter

Requirement

⚫ All agents enter the Gather stage at the same round 

after they create a reliable group (RG)

Solution

⚫ Enter the Gather stage every 𝑋(𝑁) rounds of the MakeGroup

stage

⇒ All agents repeatedly enter the Gather stage at the same 

round

⚫ All agents achieve the gathering if a RG is created

⚫ Agents don’t disturb the MakeGroup stage if no RG is created
GatherMakeGroup GatherMakeGroup

RG is not 

created

Don’t 

disturb 

MakeGroup

RG is created Achieve gathering



⚫ CollectID stage : 𝑂 Λ𝑔𝑜𝑜𝑑 ∙ 𝑋 𝑁

⚫ Λ𝑔𝑜𝑜𝑑 : The length of the largest ID among good agent IDs

⚫ MakeGroup stage : 𝑂(𝑓 ∙ 𝑋 𝑁 )

⚫ Gather stage : 2𝑋 𝑁 rounds are inserted every 𝑋 𝑁 rounds

⚫ Step 1 : 𝑋 𝑁

⚫ Step 2 : 𝑋 𝑁

26Time complexity with non-simultaneous 
termination

Total time complexity: 𝑂 𝑓 + Λ𝑔𝑜𝑜𝑑 ∙ 𝑋 𝑁

𝑓: #Byzantine agents

Λ𝑔𝑜𝑜𝑑 : The length of the largest ID among good agents

𝑋 𝑛 : Time required to visit all 𝑛 nodes



Contribution

Reduce time complexity in weakly Byzantine environments by relaxing #Byzantine 

agents

Future work

Design an algorithm that works even in the presence of startup delay

27
Conclusion

𝑛 : #nodes, 𝑁 : Upper bound of #nodes, 𝑘 : #agents in the network, 𝑓 : #Byzantine agents, 

Λ𝑔𝑜𝑜𝑑 : The length of the largest ID among good agents, Λ𝑎𝑙𝑙 : The length of the largest ID among agents, 

Λ𝑔𝑜𝑜𝑑| ≤ |Λ𝑎𝑙𝑙 , 𝑋 𝑛 : Time required to visit all 𝑛 nodes

Input
Startup 

delay

Condition of 

#Byzantine 

agents

Simultaneous 

termination
Time complexity

[1] 𝑛 Presence 𝑓 + 1 ≤ 𝑘 Possible 𝑂 𝑛4 ∙ Λ𝑔𝑜𝑜𝑑 ∙ 𝑋 𝑛

Algo. 

1
𝑁 Absence 4𝑓2 + 9𝑓 + 4 ≤ 𝑘 Impossible 𝑂 𝑓 + Λ𝑔𝑜𝑜𝑑 ∙ 𝑋 𝑁

Algo. 

2
𝑁 Absence 4𝑓2 + 9𝑓 + 4 ≤ 𝑘 Possible 𝑂 𝑓 + Λ𝑎𝑙𝑙 ∙ 𝑋 𝑁


